Quest for Mathematics I (E2): Exercise sheet 4

- 1. Find the equations of the tangent to the curves described by the following equations:
 - (a) $y = x^3 2x + 1$ at the point (1, 0);
 - (b) $(x^2 + y^2 1)^3 x^2y^3 = 0$ at the point (1, 1);
 - (c) $x(t) = \sin(t)(1 \cos(t)), y(t) = \cos(t)(1 \cos(t))$ at (1, 0).

NB. Examples (b) and (c) are sketched as follows.

2. (a) Prove the mean value theorem for $f(x) = x^2$ directly, i.e. for a < b given, identify a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

(b) Use the mean value theorem to check that $e^x \ge 1 + x$ for all $x \in \mathbb{R}$.

3. After computing y' and y'', sketch the following curves:

- (a) $y = \frac{(x-1)^2}{1+x^2}, x \in \mathbb{R};$
- (b) $y = 1 + x \cos(x), x \in [0, 2\pi];$
- (c) $y = x^{-1}e^x, x \in \mathbb{R};$
- (d) $y = \log |\cos(x)|, x \in [-\pi/2, \pi/2].$

In each case, you should identify and label (where relevant):

- asymptotes;

- stationary points (including whether they are maxima/minima/inflection points);
- which sections of the curve are increasing/decreasing;
- which sections of the curve are convex/concave.